A Framework for Occupational Fraud Detection by Social Network Analysis
نویسندگان
چکیده
This paper explores issues related to occupational fraud detection. We observe over the past years, a broad use of network research across social and physical sciences including but not limited to social sharing and filtering, recommendation systems, marketing and customer intelligence, counter intelligence and law enforcement. However, the rate of social network analysis adoption in organizations by control professionals or even by academics for insider fraud detection purpose is still very low. This paper introduces the OFD – Occupational Fraud Detection framework, based on formal social network analysis and semantic reasoning principles by taking a design science research perspective.
منابع مشابه
MEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملFinancial Reporting Fraud Detection: An Analysis of Data Mining Algorithms
In the last decade, high profile financial frauds committed by large companies in both developed and developing countries were discovered and reported. This study compares the performance of five popular statistical and machine learning models in detecting financial statement fraud. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements betw...
متن کامل106-2012: Community Detection to Identify Fraud Events in Telecommunications Networks
Telecommunications’ industry evolves into a high competitive market which demands companies to establish an effective revenue assurance framework. Social network analysis can be used to increase the knowledge about the customers’ behavior, not just in terms of individual usage but mostly in relation to the customers’ connections and how they create communities according to their call and text m...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015